Explicit stabilised gradient descent for faster strongly convex optimisation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Stochastic Gradient Descent for Strongly Convex Optimization

We motivate this study from a recent work on a stochastic gradient descent (SGD) method with only one projection (Mahdavi et al., 2012), which aims at alleviating the computational bottleneck of the standard SGD method in performing the projection at each iteration, and enjoys an O(log T/T ) convergence rate for strongly convex optimization. In this paper, we make further contributions along th...

متن کامل

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Stochastic gradient descent (SGD) is a simple and popular method to solve stochastic optimization problems which arise in machine learning. For strongly convex problems, its convergence rate was known to be O(log(T )/T ), by running SGD for T iterations and returning the average point. However, recent results showed that using a different algorithm, one can get an optimal O(1/T ) rate. This mig...

متن کامل

Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent

Nesterov's accelerated gradient descent (AGD), an instance of the general family of"momentum methods", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stat...

متن کامل

On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization

The cyclic block coordinate descent-type (CBCD-type) methods, which performs iterative updates for a few coordinates (a block) simultaneously throughout the procedure, have shown remarkable computational performance for solving strongly convex minimization problems. Typical applications include many popular statistical machine learning methods such as elastic-net regression, ridge penalized log...

متن کامل

Open Problem: Is Averaging Needed for Strongly Convex Stochastic Gradient Descent?

Stochastic gradient descent (SGD) is a simple and very popular iterative method to solve stochastic optimization problems which arise in machine learning. A common practice is to return the average of the SGD iterates. While the utility of this is well-understood for general convex problems, the situation is much less clear for strongly convex problems (such as solving SVM). Although the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2020

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-020-00819-y